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Exact Line-Search for Quadratics
Analysis uses exact line-search arguments.
Consider quadratic

1
q(x) = EXTGX +b"x
and perform an exact line-search: X + as:

migizrraize q(%+as)=L(x+as)TG(x +as) + b7 (% + as)
Re-arrange quadratic as

gk +as)=1a?sTGs+a(s"Gx+bTs) + 387G+ b' %
Setting J dq =0 we get:

sT(Gk+b) —s"Vq(x)

— el T (G —
0=as' Gs+s' (Gx+b) & a=-— e T TG
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Conjugate Direction Methods

minimize f(x)
x€eR"

Conjugate direction methods relate to a quadratic model of f(x).

Definition (Conjugacy)

m < n nonzero vectors, st ... s(™ € R" are conjugate wrt
positive definite Hessian G, iff s GsU) = 0 for all i £ J.

e Conjugacy is orthogonality across positive definite Hessian, G.

e For G =/, get orthogonality.

Definition (Conjugacy)
A conjugate direction method generates conjugate directions
applied to a positive definite quadratic.
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Conjugate Direction Methods

Theorem (Linear Independence of Conjugate Directions)
A set of m conjugate directions is linearly independent. J

m
Proof. s, ... s(m c R" conjugate. Consider Z aist) =0
i=1
. need to show a; = 0 is only solution of this system
G positive definite = G nonsingular, hence

Za,-s(") =0 & G <Z a,-s(")> =0.
i=1 i=1
Pre-multiply by sU):
76 (Z a,.sw) L0 e a0 o a-0
i=1

because G positive definite. O
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Conjugate Direction Methods

Theorem (Termination of Conjugate Direction Methods)

@ A conjugate direction method terminates for a positive
definite quadratic in at most n exact line-searches.

o Each iterate, xX(kT1) reached by k < n descend steps along
conjugate directions s(1), ... s(K) ¢ R,

Proof. Define the quadratic as
1 7 T
q(x) = X Gx + b x.

Conjugate direction, s(¥), gives k + 1 iterate as

k k
x(kH1) = X(k)—l—aks(k) =...= X(l)—l-z ozjs(j) = X(H'l)—i— Z ozjs(j).

j=1 j=i+1
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Conjugate Direction Methods

Proof cont.
From previous page: Conjugate direction, s(k), give iterates

k k
x(kH1) = X(k)—l—aks(k) =...= X(l)—l-z ozjs(j) = X(H'l)—i— Z ozjs(j).

j=1 j=i+1

Corresponding gradient of quadratic is

k
g(k+1) — Gx(k‘H) +bhb=0G X(i+1) + Z OéjS(j) + b
j=it1

k
j=i+1
Pre-multiply by s() we get

k
s(i)Tg(k+1) = s(i)Tg(iJrl)—l— Z ()éjS(i)TGS(j) =0, Vi=1,..., k-1,
Jj=i+1
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Conjugate Direction Methods
Proof cont.
From previous: pre-multiply by s() we get

s glkt1) — ()T gli+1) Zk: ajsV" GsW) =0, Vi=1,... k-1,
j=i+1
where
o s()"g(i+1) = 0 due to exact line search.
o s(V"GsU) =0 due to conjugacy.
o st glk+1) = 0 due to exact line-search.

Hence,

Now, let k = n, then it follows that
sOgt) —o vi=1....n = gl =p

because, g("*1) orthogonal to n linearly independent vectors [
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Conjugate Direction Methods

Remark J

Previous Theorem holds for all conjugate direction methods!

Methods differ how s(k) constructed without knowing Hessian
Conjugate Direction Line-Search Method
Given x(9), set k = 0. repeat

Compute the conjugate direction s(k).

Compute the steplength ay := Armijo(f(x), x(k), s(K))

Set x(k*1) .= x(K) 4 o, s(k) and k = k + 1.
until x(¥) is (local) optimum;

. next consider different ways to create conjugate directions.

o 9/26



QOutline

Conjugate Direction Methods

@ Classical Conjugate Gradient Method

The Barzilai-Borwein Method

10/26



.
Classical Conjugate Gradient Method

Idea Behind Conjugate Gradients
Modify steepest descend so that directions are conjugate. J

Start by deriving method for quadratic
minimize q(x) = leGx +b"x
x€RM 2

then generalize to nonlinear f(x).

Start with s(©) = —g(0) steepest descend direction
= first step guaranteed to be downhill ... no stalling like Newton!
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Classical Conjugate Gradient Method
minimize g(x) = 1xTGX +bTx
x€eR" 2

Start with s(9 = —g(0) steepest descend direction

Choose s() as component of —g(1) conjugate to s(9)

s = — g 4 3ys©)
Look for formula for 3y such that conjugacy holds, i.e.
0= 5076V = 507G (—gM + o5

Solve for By, and get

507 g
0= 507 Gs(0)

where s Gs(0) + 0, because G positive definite, and s(®) £ 0.
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Classical Conjugate Gradient Method
Simplify formula for So:
sO7 Gg(1)
07 (07 G50

Recall, that
X1 = %0 4 4,50 o 5O = (Xu) _ x(°>) Jou,

where a3 # 0, because of steepest descend.
Now use G§ = ~ to write [y as

(xD = xO) T g (g1) — g g1)
o = (x0 = x) T G50 (g(1) — g(@)7 5(0)

Exact line-search implies 0 = g(l)Ts(O) = —g(l)Tg(O), and thus
g(l)Tg(l)

= g7 g0
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Classical Conjugate Gradient Method
Consider general step, k:

0) k=1)

s() = the component of —g(k) conjugate to s( yee .,s(
Desired conjugacy:
sOTGs) =0, vj<k o sWA0D =0 vj<k,

Use Gram-Schmidt orthogonalization procedure to get

k—1
s = —gW + 3" 3;sl) Can ;=0 for j < k777
j=0
For quadratic, can show that 3; = 0, Vj < k. Hence get:
0 ifk=0

s = —gly B 15D where By = g(k" gk) herwi
————~ ot
D)7 ) otherwise
Fletcher-Reeves conjugate gradient method
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Classical Conjugate Gradient Method

Min. quadratic g(x) = 2x7 Gx + b x with Fletcher-Reeves (FR)

0 ifk=0

sk = g8, 1sk=1)  where By 1 = KT (k)

(k) gl
g & .
(DT () otherwise

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x(™) after
m < n iterations for a pos. definite quadratic. Moreover, for
0<i<m-—1, we have that:

© Conjugate search directions: s GsU) = 0 vi #J, J<I.
@ Orthogonal gradients: g gl) =0Vi#£j, j=1,...,i—1.
© Descend property: s(i)Tg(f) = —g(i)Tg(f) <O0Vi#j.
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Proof of Fletcher-Reeves Convergence

Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x(M) after
m < n iterations for a pos. definite quadratic Moreover, for
0<i<m-—1, we have that:

© Conjugate search directions: s GsU) = 0 vi #j, j<I.
@ Orthogonal gradients: g gl) =0Vi+#j, j=1,...,i—1.
© Descend property: s(i)Tg(i) = —g(f)Tg(i) <OVi#j.

Proof. By induction over m ...

For m = 0, there is nothing to show.

For m > 1, show 1. to 3. of Theorem by induction over i.
For i = 0, observe

= 3. holds for i = 0, nothing to show for 1. and 2. (no j < 0!)
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Proof of Fletcher-Reeves Convergence
Theorem (Convergence of FR for Convex Quadratics)

FR with exact line-search terminates at stationary point, x(M) after
m < n iterations for a pos. definite quadratic Moreover, for
0<i<m-—1, we have that:

@ Conjugate search directions: s GsU) = 0 vi #J, J<I.
@ Orthogonal gradients: g gl) =0Vi+#£j, j=1,...,i—1.
© Descend property: s(i)Tg(i) = —g(f)Tg(i) <OVi#j.

Proof cont. Induction hypothesis: Assume that 1.-3. hold for /.
Show 1.-3. also hold for i 4+ 1: Quadratic objective implies:

gt = xM) y p=G (x(’) + a;s(i)> +b=g" 4 ;G
Exact line search «; implies:
N OLNG! ()T (i)
_—g'rs\ gl g . .
= TG <TG from 3. by induction
o 17/26
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Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for g(i)Tg(j) =0
— g7 gl) 4 a;s07 G <_5(j) i 5j7150—1)>
from definition of sU) = —gl) 4+ ﬁj,ls(j_l), to get g). Thus,

g7 g0) = g7 gl) _ ;5007 Gol) 4 815" GGV

For i = j observe:

T . .
7> = sum of first terms is zero

@ Induction Part 1. = last expression zero.

@ Exact line-search = a =
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.
Proof of Fletcher-Reeves Convergence

Now, we consider Part 2 for g(i+1)Tg(f) =0:

g7 g0) — g7 gl) _ s Gol) 1 8,15 GG

For i < j observe:
@ Induction Part 2. = first expression zero
@ Induction Part 1. = last two expressions zero.
Thus, gt gl) =0 for j =1,...,i which proves Part 2.
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.
Proof of Fletcher-Reeves Convergence

Consider Part 1. Use s(*1) = —g(i+1) 4 3:5():

ST ) = g (+1)7 Gs0) 4 3,50 Gsl)
— o] 1g(f+1>T ( G) _ go+1>) + 8507 Gs),

because GsU) = aJ.—lG (XU) _ X(j+1)) _ Oéj_lG (g(f) B g(jﬂ)).

For j < i get:
@ Part 2. = first component is zero

@ Part 1. and induction = second component is zero

a 20/26



Proof of Fletcher-Reeves Convergence
Consider again

ST Gsl) = _ g7 G50) 4 .5()7 GsU)
— o gl (00— g0) 4 550 G0,

For j = i re-write this expression as

SUHDT Gsl) = - 1gUH DT gl) — o= 1gUH DT g+ 1 g gU+1)T G50,

Part 2. = first component is zero
Use exact line-search «;; second component becomes

—a1gUD gUtD) 4 ggUtDT GsU)
_ _50+1)TG5(1)% 1 8,50+ Gs) = o,

from ; formula.

= s(+1)7GsU) = 0 for all j = 1,...,i, which proves Part 1.
Quadratic termination follows from Part 1., and conjugate
directions, s, ... s(m), O
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Conjugate Gradient Method for Nonlinear Functions

Consider minimize f(x), then
x€ER"

@ Cannot perform exact line-search ... approx, e.g. Armijo

@ Cannot expect termination after n steps
= re-start s("1) = —g("1) or re-orthogonalize

Other Conjugate Gradient Schemes

(gD — glk)) T gk

PR _
fi” = gk=1)T g(k-1)
and

;
by _ s(k) g(k)
k _s(k—l)Tg(k—l)

Dai-Yuan better than Polak-Ribiere better than Fletcher-Reeves
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Conjugate Direction Methods
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The Barzilai-Borwein Method

Recent renewed interest in a simpler two-step gradient method

@ Satisfy quasi-Newton in least-squares sense.

Barzilai-Borwein Method
Given x(9, set k = 0.

repeat
Set the step-size ay using one of BB schemes below.

Set x(k+1) .= x(K) — o g(k) and k = k + 1. [Steepest Descend]
until x(%) is (local) optimum;

Surprise: No Line Search
o Barzilai-Borwein Algorithm has no line-search

@ Success relies on non-monotone behavior (may increase f(x))
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The Barzilai-Borwein Method

Popular formulas for BB step size

§k=1)5(k=1)

BB
S sV ) (1)
(k—=1) 5 (k—1)
of® = S 2)
=Dy

o288 _ B for odd k (3)
M= BBS for even k

@ Can reset the step length to steepest-descend

@ Generalized to bound-constrained optimization using
projection
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Summary of Conjugate Direction Methods

Methods for unconstrained optimization:

minimize f(x)

Conjugacy is orthogonality across Hessian G, i.e.

s07Gs) =0 vi #J

Conjugate direction methods terminate finitely for quadratic

Good alternative to quasi-Newton

Recently, interest in Barzilai-Borwein schemes

26

26



	Conjugate Direction Methods
	Classical Conjugate Gradient Method
	The Barzilai-Borwein Method

